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Abstract In this paper, we introduce several types of (generalized) Levitin–Polyak well-
posednesses for a variational inequality problem with abstract and functional constraints.
Criteria and characterizations for these types of well-posednesses are given. Relations among
these types of well-posednesses are also investigated.
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1 Introduction and preliminaries

Well-posedness of unconstrained and constrained scalar optimization problems was first
introduced and studied in Tykhonov [28] and Levitin and Polyak [18], respectively. Since
then, various notions of well-posednesses have been defined and extensively studied (see,
e.g., [6,8,23,27,32–34]). Recent studies on well-posedness of optimization problems have
been extended to vector optimization problems (see, e.g., [4,7,13,14,21,22]). The study
of Levitin-Polyak well-posedness for convex scalar optimization problems with functional
constraints originates from [17]. Most recently, this research was extended to nonconvex
optimization problems with both abstract and functional constraints [15] and nonconvex
vector optimization problems with abstract and functional constraints [16]. Tykhonov and
Hadamard well-posednesses of (scalar) variational inequality problems, equilibrium prob-
lems and mathematical programs with variational inequality (Nash equilibrium) constraints
have been studied in the literature (see, e.g., [19,20,24,26,30] and the references therein).
Presently, there are two approaches for defining approximating sequences in the study of
well-posedness of variational inequality problems. One is based on the gap function given
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by Auslender [1] (see, e.g., [24,26,30]) and the other is based on the gap function given in
Fukushima [9] (see, e.g., [19,20]). It is worth noting that all the variational inequaliies con-
sidered in [19,20,24,26,30], etc., are defined on abstract sets. It is obvious that variational
inequalities with both abstract and explicit constraints are more difficult to handle. Recently,
some authors studied augmented Lagrangian methods and penalty methods for variational
inequalities with explicit constraints (see, e.g., [2,3,12,31]).

It is easily seen that one can equivalently transform a variational inequality problem with
explicit constraints into a minimizing problem with explicit constraints by using the Auslen-
der gap function. As noted in [15], the study of Levitin–Polyak (LP in short) well-posednesses
and generalized LP well-posednesses is important in both theory and methodology for a min-
imizing problem with explicit constraints. In this paper, we will adapt the various versions of
LP well-posednesses and generalized LP well-posednesses for constrained minimizing prob-
lems to define various types of LP well-posednesses and generalized LP well-posednesses for
a variational inequality problem with explicit constraints. We will derive various criteria and
characterizations for the various (generalized) LP well-posedness of constrained variational
inequalities. Relationships among these well-posednesses will also be established.

Let (X, ‖ · ‖) be a normed space, X∗ be its dual space, and (Y, d1) be a metric space. Let
X1 ⊂ X and K ⊂ Y be nonempty and closed sets. Let F : X1 → X∗ and g : X1 → Y be
two functions. We denote by 〈F(x), z〉 the value of the functional F(x) at z.

Let

X0 = {x ∈ X1 : g(x) ∈ K }.
Consider the following constrained variational inequality problem:

(VIP) Find x̄ ∈ X0 such that

〈F(x̄), x − x̄〉 ≥ 0, ∀x ∈ X0.

Throughout the paper, we always assume that X0 
= ∅ and g is continuous on X1.
Denote by X̄ the solution set of (VIP).
Let (P, d) be a metric space and P1 ⊂ P . We denote by dP1(p) = inf{d(p, p′) : p′ ∈ P1}

the distance from the point p ∈ P to the set P1.

Definition 1.1 (i) A sequence {xn} ⊂ X1 is called a type I LP approximating solution
sequence if there exists {εn} ⊂ R1+ with εn → 0 such that

dX0(xn) ≤ εn (1)

and

〈F(xn), x − xn〉 ≥ −εn, ∀x ∈ X0. (2)

(ii) {xn} ⊂ X1 is called a type II LP approximating solution sequence if there exist {εn} ⊂
R1+ with εn → 0 and {yn} ⊂ X0 satisfying (1), (2) and

〈F(xn), yn − xn〉 ≤ εn . (3)

(iii) {xn} ⊂ X1 is called a generalized type I LP approximating solution sequence if there
exists {εn} ⊂ R1+ with εn → 0 satisfying

dK (g(xn)) ≤ εn (4)

and (2).
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(iv) {xn} ⊂ X1 is called a generalized type II LP approximating solution sequence if there
exist {εn} ⊂ R1+ with εn → 0 and {yn} ⊂ X0 satisfying (4), (2) and (3).

Definition 1.2 (VIP) is said to be type I (resp. type II, generalized type I, generalized type
II) LP well-posed if the solution set X̄ of (VIP) is nonempty, and for any type I (resp. type
II, generalized type I, generalized type II) LP approximating solution sequence {xn}, there
exist a subsequence {xn j } of {xn} and x̄ ∈ X̄ such that xn j → x̄ .

Remark 1.1 (i) It is clear that any (generalized) type II LP approximating solution sequence
is a (generalized) type I LP approximating solution sequence. Thus, (generalized) type
I LP well-posedness implies (generalized) type II LP well-posedness.

(ii) Each type of LP well-posedness of (VIP) implies that the solution set X̄ is compact.
(iii) Suppose that g is uniformly continuous on a set

X1(δ0) = {x ∈ X1 : dX0(x) ≤ δ0} (5)

for some δ0 > 0. Then, generalized type I (type II) LP well-posedness of (VIP) implies
its type I (type II) LP well-posedness.

To see that the various LP well-posednesses of (VIP) are adaptations of the corresponding
LP well-posednesses in minimization problems by using the Auslender gap function, we
consider the following general constrained optimization problem:

(P) min f (x)

s.t. x ∈ X1,

g(x) ∈ K ,

where f : X1 → R1 ∪ {+∞} is lower semicontinuos (l.s.c. in short). The feasible set of (P)
is still denoted by X0. The optimal set and optimal value of (P) are denoted by X̄ ′ and v̄,
respectively. Note that if Dom( f ) ∩ X0 
= ∅, where

Dom( f ) = {x ∈ X1 : f (x) < +∞},
then v̄ < +∞. In this paper, we always assume that v̄ > −∞. LP well-posednesses for the
special case where f is finite-valued have been studied in [15].

Definition 1.3 (i) A sequence {xn} ⊂ X1 is called a type I LP minimizing sequence for
(P) if

lim supn→+∞ f (xn) ≤ v̄ (6)

and

dX0(xn) → 0. (7)

(ii) {xn} ⊂ X1 is called a type II LP minimizing sequence for (P) if

lim
n→+∞ f (xn) = v̄ (8)

and (7) holds.
(iii) {xn} ⊂ X1 is called a generalized type I LP minimizing sequence for (P) if (6) holds

and

dK (g(xn)) → 0. (9)
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(iv) {xn} ⊂ X1 is called a generalized type II LP minimizing sequence for (P) if (8) and (9)
hold.

Definition 1.4 (P) is said to be type I (resp. type II, generalized type I, generalized type II)
LP well-posed if, v̄ is finite, X̄ ′ 
= ∅ and for any type I (resp. type II, generalized type I,
generalized type II) LP minimizing sequence {xn} of (P), there exist a subsequence {xn j } of
{xn} and x̄ ∈ X̄ ′ such that xn j → x̄ .

The Auslender gap function for (VIP) is

f (x) = sup
x ′∈X0

〈F(x), x − x ′〉,∀x ∈ X1. (10)

Clearly, f is a function from X1 to (−∞,+∞]. Moreover, if there exist x0 ∈ X0 and a ∈ R1

such that 〈F(x0), x − x0〉 ≥ a,∀x ∈ X0, then Dom( f ) ∩ X0 
= ∅. The next proposition
establishes relationships between the various LP well-posednesses of (VIP) and those of (P)
with f (x) defined by (10). It is clear that X̄ 
= ∅ if and only if X̄ ′ 
= ∅.

Proposition 1.1 Assume that X̄ 
= ∅. Then, (VIP) is type I (resp. type II, generalized type I,
generalized type II) LP well-posed if and only if (P) is type I (resp. type II, generalized type
I, generalized type II) LP well-posed with f (x) defined by (10).

Proof It is well-known that, if X̄ 
= ∅, then x̄ is a solution of (VIP) if and only if x̄ is an
optimal solution of (P) with v̄ = f (x̄) = 0 and f (x) defined by (10). It is also routine to
check that a sequence {xn} is a type I (resp. type II, generalized type I, generalized type
II) LP approximating solution sequence of (VIP) if and only if it is a type I (resp. type II,
generalized type I, generalized type II) LP minimizing sequence of (P). It follows that (VIP)
is type I (resp. type II, generalized type I, generalized type II) LP well-posed if and only if
(P) is type I (resp. type II, generalized type I, generalized type II) LP well-posed with f (x)

defined by (10). ��
To end this section, we note that all the results in [15] for the well-posedness hold for (P)

as well so long as Dom( f ) ∩ X0 
= ∅.

2 Criteria and characterizations for (generalized) LP well-posedness of (VIP)

In this section, we give necessary and sufficient conditions for the various types of (general-
ized) LP well-posednesses defined in Sect. 1.

Consider the following statement:

[X̄ 
= ∅ and, for any type I (resp. type II, generalized type I, generalized type II)

LP approximating solution sequence {xn}, we have dX̄ (xn) → 0.] (11)

It is elementary to prove the proposition below.

Proposition 2.1 If (VIP) is type I (resp. type II, generalized type I, generalized type II) LP
well-posed, then (11) holds. Conversely, if (11) holds and X̄ is compact, then (VIP) is type I
(resp. type II, generalized type I, generalized type II) LP well-posed.

Now consider a real-valued function c = c(t, s) defined for t, s ≥ 0 sufficiently small,
such that

c(t, s) ≥ 0, ∀t, s, c(0, 0) = 0, (12)

sn → 0, tn ≥ 0, c(tn, sn) → 0 imply tn → 0. (13)
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We state ([15], Theorem 2.1) as the following lemma.

Lemma 2.1 Consider the constrained optimization problem (P). If (P) is type II LP well-
posed, then there exists a function c satisfying (12) and (13) such that

| f (x) − v̄| ≥ c(dX̄ ′(x), dX0(x)), ∀x ∈ X1. (14)

Conversely, suppose that X̄ ′ is nonempty and compact, and (14) holds for some c satisfying
(12) and (13). Then (P) is type II LP well-posed.

The following theorem follows immediately from Proposition 1.1 and Lemma 2.1 with
f (x) defined by (10) and v̄ = 0.

Theorem 2.1 If (VIP) is type II LP well-posed, then there exists a function c satisfying (12)
and (13) such that

| f (x)| ≥ c(dX̄ (x), dX0(x)), ∀x ∈ X1, (15)

where f (x) is defined by (10). Conversely, suppose that X̄ is nonempty and compact, and
(15) holds for some c satisfying (12) and (13). Then (VIP) is type II LP well-posed.

Analogously, we can establish the following theorem by applying Proposition 1.1 and
([15], Theorem 2.2).

Theorem 2.2 If (VIP) is generalized type II LP well-posed, then there exists a function c
satisfying (12) and (13) such that

| f (x)| ≥ c(dX̄ (x), dK (g(x))), ∀x ∈ X1, (16)

where f (x) is defined by (10). Conversely, suppose that X̄ is nonempty and compact, and (16)
holds for some c satisfying (12) and (13). Then (VIP) is generalized type II LP well-posed.

Next we give Furi–Vignoli type characterizations [10] for the (generalized) type I LP
well-posednesses of (VIP). To this purpose, first we consider the constrained optimization
problem (P).

Let (X, ‖ · ‖) be a Banach space. Recall that the Kuratowski measure of noncompactness
for a subset A of X is defined as

α(A) = inf{ε > 0 : A ⊂ ∪
1≤i≤n

Ci , for some Ci , diam(Ci ) ≤ ε},

where diam(Ci ) is the diameter of Ci defined by

diam(Ci ) = sup{‖x1 − x2‖ : x1, x2 ∈ Ci }.
Given two nonempty subsets A and B of X , define the excess of set A to set B by

e(A, B) = sup{dB(a) : a ∈ A}.
The Hausdorff distance between A and B is defined as

haus(A, B) = max{e(A, B), e(B, A)}.
Let, for each ε > 0,

�1(ε) = {x ∈ X1 : f (x) ≤ v̄ + ε, dX0(x) ≤ ε},
�2(ε) = {x ∈ X1 : f (x) ≤ v̄ + ε, dK (g(x)) ≤ ε}.

The next lemma can be proved analogously to ([17], Theorem 5.5).
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Lemma 2.2 Let (X, ‖ · ‖) be a Banach space. Consider the optimization problem (P). Sup-
pose that f is bounded below on X0. Then, (P) is (generalized) type I LP well-posed if and
only if

( lim
ε→0

α(�2(ε)) = 0) lim
ε→0

α(�1(ε) = 0.

Now let f (x) be defined by (10) and v̄ = 0. Then, it is easily seen that

�1(ε) = {x ∈ X1 : 〈F(x), x ′ − x〉 ≥ −ε, ∀x ′ ∈ X0, dX0(x) ≤ ε} (17)

and

�2(ε) = {x ∈ X1 : 〈F(x), x ′ − x〉 ≥ −ε, ∀x ′ ∈ X0, dK (g(x)) ≤ ε}. (18)

Theorem 2.3 Let (X, ‖ · ‖) be a Banach space. Assume that X̄ 
= ∅. Let �1(ε) and �2(ε)

be defined by (17) and (18), respectively. Then, (VIP) is (generalized) type I LP well-posed
if and only if

( lim
ε→0

α(�2(ε)) = 0) lim
ε→0

α(�1(ε) = 0.

Proof Note that the function f (x) defined by (10) is nonnegative on X0. By Proposition 1.1
and Lemma 2.2, the conclusion follows. ��

Definition 2.1 (i) Let Z be a topological space and Z1 ⊂ Z be nonempty. Suppose that
h : Z → R1 ∪ {+∞} is an extended real-valued function. h is said to be level-compact
on Z1 if, for any s ∈ R1, the subset {z ∈ Z1 : h(z) ≤ s} is compact.

(ii) Let Z be a finite dimensional normed space and Z1 ⊂ Z be nonempty. A function
h : Z → R1 ∪ {+∞} is said to be level-bounded on Z1 if Z1 is bounded or

lim
z∈Z1,‖z‖→+∞ h(z) = +∞.

The following proposition presents some sufficient conditions for type I LP well-posed-
ness of (VIP).

Proposition 2.2 Assume that for each x ′ ∈ X0, 〈F( · ), x ′ − ( · )〉 is upper semicontinuous
(u.s.c. in short) on the set X1(δ0), which is defined by (5). Suppose that the solution set X̄ of
(VIP) is nonempty. Further assume that one of the following conditions holds.

(i) There exists 0 < δ1 ≤ δ0 such that X1(δ1) is compact, where

X1(δ1) = {x ∈ X1 : dX0(x) ≤ δ1}; (19)

(ii) the function f defined by (10) is level-compact on X1;
(iii) X is finite dimensional and

lim
x∈X1,‖x‖→+∞ max{ f (x), dX0(x)} = +∞, (20)

where f is defined by (10);
(iv) there exists 0 < δ1 ≤ δ0 such that f is level-compact on X1(δ1) defined by (19).

Then, (VIP) is type I LP well-posed.
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Proof Let {xn} be a type I LP approximating solution sequence. Then, there exists {εn} ⊂ R1+
with εn → 0 such that

〈F(xn), x ′ − xn〉 ≥ −εn,∀x ′ ∈ X0, (21)

dX0(xn) ≤ εn . (22)

(i) From (22), we can assume without loss of generality that {xn} ⊂ X1(δ1). By the
compactness of X1(δ1), there exist a subsequence {xn j } of {xn} and x̄ ∈ X1(δ1) such that
xn j → x̄ . From this fact and (22), we have x̄ ∈ X0. Furthermore, by (21), we have

〈F(xn j ), x ′ − xn j 〉 ≥ −εn j , ∀x ′ ∈ X0.

Passing to the upper limit, we get

〈F(x̄), x ′ − x̄〉 ≥ lim sup j→+∞〈F(xn j ), x ′ − xn j 〉 ≥ 0, ∀x ′ ∈ X0.

Thus, x̄ ∈ X̄ .

It is obvious that (ii) implies (iv). Now we show that (iii) implies (iv). Indeed, we need
only to show that for any t ∈ R1, the set

A = {x ∈ X1(δ1) : f (x) ≤ t}
is bounded since X is a finite dimensional space and the function f defined by (10) is l.s.c.
on X1(δ0) (by the u.s.c. of 〈F(·), x ′ − (·)〉,∀x ′ ∈ X0) and thus, A is closed. Suppose to the
contrary that there exist t ∈ R1 and {x ′

n} ⊂ X1(δ1) such that ‖x ′
n‖ → +∞ and f (x ′

n) ≤ t.
From {x ′

n} ⊂ X1(δ1), we have

dX0(x ′
n) ≤ δ1.

Thus,

max{ f (x ′
n), dX0(x ′

n)} ≤ max{t, δ1},
contradicting (20). Consequently, we need only to prove that if (iv) holds, then (VIP) is type
I LP well-posed.

(iv) By (22), we can obviously assume without loss of generality that {xn} ⊂ X1(δ1).

From (21), we can assume without loss of generality that

{xn} ⊂ {x ∈ X1 : f (x) ≤ 1},
where f is defined by (10). By the level-compactness of f on X1(δ1), there exist a subse-
quence {xn j } of {xn} and x̄ ∈ X1(δ1) such that xn j → x̄ . From this fact and (22), we have
x̄ ∈ X0. Furthermore, by (21), we have

〈F(xn j ), x ′ − xn j 〉 ≥ −εn j , ∀x ′ ∈ X0.

Passing to the upper limit, we get

〈F(x̄), x ′ − x̄〉 ≥ lim sup j→+∞〈F(xn j ), x ′ − xn j 〉 ≥ 0,∀x ′ ∈ X0.

Thus, x̄ ∈ X̄ . ��
Similarly, we can prove the next proposition.
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Proposition 2.3 Assume that there exists δ0 > 0 such that for each x ′ ∈ X0, 〈F(·), x ′−(·)〉
is u.s.c. on the set

X2(δ0) = {x ∈ X1 : dK (g(x)) ≤ δ0}.
Suppose that the solution set X̄ of (VIP) is nonempty. Further assume that one of the following
conditions holds.

(i) There exists 0 < δ1 ≤ δ0 such that X2(δ1) is compact, where

X2(δ1) = {x ∈ X1 : dK (g(x)) ≤ δ1}; (23)

(ii) the function f defined by (10) is level-compact on X1;
(iii) X is finite dimensional and

lim
x∈X1,‖x‖→+∞ max{ f (x), dK (g(x))} = +∞,

where f is defined by (10);
(iv) there exists 0 < δ1 ≤ δ0 such that f is level-compact on X2(δ1) defined by (23).

Then, (VIP) is generalized type I well-posed.

Remark 2.1 If F is continuous on X1, then the function 〈F(·), x ′ − (·)〉 is continuous on X1

for any x ′ ∈ X0.

Proposition 2.4 Let X be finite dimensional. Let F be continuous on X1 and the solution set
X̄ of (VIP) be nonempty. Suppose that there exist δ1 > 0 and x0 ∈ X0 such that the function
〈F(x), x − x0〉 is level-bounded on the set X1(δ1) defined by (19). Then, (VIP) is type I LP
well-posed.

Proof Let {xn} be a type I LP approximating solution sequence. Then, there exists {εn} ⊂ R1+
with εn → 0 such that

〈F(xn), x ′ − xn〉 ≥ −εn, ∀x ′ ∈ X0, (24)

dX0(xn) ≤ εn . (25)

From (25), we can assume without loss of generality that {xn} ⊂ X1(δ1). Let us show by
contradiction that {xn} is bounded. Otherwise, we assume without loss of generality that
‖xn‖ → +∞. By the level-boundedness condition, we have

lim
n→+∞〈F(xn), x0 − xn〉 = −∞,

contradicting (24) (with x ′ replaced by x0) when n is sufficiently large. Consequently, we
can assume without loss of generality that xn → x̄ . Obviously, x̄ ∈ X0. Furthermore, taking
the limit in (24), we see that x̄ ∈ X̄ . ��

Similarly, we can prove the next result.

Proposition 2.5 Let X be finite dimensional. Let F be continuous on X1 and the solution
set X̄ of (VIP) be nonempty. Suppose that there exist δ1 > 0 and x0 ∈ X0, the function
〈F(x), x − x0〉 is level-bounded on the set X2(δ1) defined by (23). Then, (VIP) is generalized
type I LP well-posed.
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Let X be finite dimensional and X3 ⊂ X be nonempty. Recall that F : X → X∗ is said
to be strongly coercive on X3 (cf. [29]) if X3 is bounded or

lim
x∈X3,‖x‖→+∞

〈F(x), x − x ′〉
‖x − x ′‖ = +∞

holds for any x ′ ∈ X3. Clearly, F is strongly coercive on X1(δ1) (defined by (19)) implies
that for each x ′ ∈ X0, the function 〈F(x), x − x ′〉 is level-bounded on X1(δ1); F is strongly
coercive on X2(δ1) (defined by (23)) implies that for each x ′ ∈ X0, the function 〈F(x), x−x ′〉
is level-bounded on X2(δ2). Thus, we have the next two corollaries.

Corollary 2.1 Let X be finite dimensional. Let F be continuous on X1 and the solution set
X̄ of (VIP) be nonempty. Suppose that there exists δ1 > 0 such that F is strongly coercive
on X1(δ1) defined by (19). Then, (VIP) is type I LP well-posed.

Corollary 2.2 Let X be finite dimensional. Let F be continuous on X1 and the solution set
X̄ of (VIP) be nonempty. Suppose that there exists δ1 > 0 such that F is strongly coercive
on X2(δ1) defined by (23). Then, (VIP) is generalized type I LP well-posed.

Definition 2.2 [11] Let X be finite dimensional and X3 ⊂ X .

(i) F is said to be monotone on X3 if

〈F(x1) − F(x2), x1 − x2〉 ≥ 0, ∀x1, x2 ∈ X3.

(ii) F is said to be coercive on X3 if X3 is bounded or there exists x0 ∈ X3 such that

lim
x∈X3,‖x‖→+∞

〈F(x), x − x0〉
‖x‖ = +∞.

The following proposition establishes type I LP well-posedness under monotonicity and
coercivity of the mapping F .

Proposition 2.6 Let X be finite dimensional. Let F be continuous on X1 and the solution
set X̄ of (VIP) be nonempty. Suppose that there exists δ1 > 0 such that F is monotone and
coercive on X1(δ1) defined by (19). Further assume that the set

Q = {x ∈ X0 : for any x1 ∈ X1(δ1), there exists t0 ∈ (0, 1)

such that x1 + t0(x − x1) ∈ X0} (26)

is nonempty. Then, (VIP) is type I LP well-posed.

Proof Let {xn} be a type I LP approximating solution sequence. Then, there exists {εn} ⊂ R1+
with εn → 0 such that

〈F(xn), x ′ − xn〉 ≥ −εn, ∀x ′ ∈ X0, (27)

dX0(xn) ≤ εn . (28)

From (28), we can assume without loss of generality that {xn} ⊂ X1(δ1). Let us show by
contradiction that {xn} is bounded. Suppose that x ′

0 ∈ Q. Then, there exists t0 ∈ (0, 1) such
that x0 + t0(x ′

0 − x0) ∈ X0, where x0 ∈ X1(δ1) is the element in the definition of coercivity
of F on X1(δ1). Thus, from (27), we have

〈F(xn), x0 + t0(x ′
0 − x0) − xn〉 ≥ −εn .
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That is,

(1 − t0)〈F(xn), x0 − xn〉 + t0〈F(xn), x ′
0 − xn〉 ≥ −εn .

Namely,

(1 − t0)〈F(xn), x0 − xn〉 + t0
[〈F(xn) − F(x ′

0), x ′
0 − xn〉 + 〈F(x ′

0), x ′
0 − xn〉] ≥ −εn .

(29)

By the monotonicity of F on X1(δ1), we have

〈F(xn) − F(x ′
0), x ′

0 − xn〉 ≤ 0. (30)

The combination of (29) and (30) yields

(1 − t0)〈F(xn), x0 − xn〉 + t0〈F(x ′
0, x ′

0 − xn〉 ≥ −εn . (31)

If {xn} is unbounded, we assume without loss of generality that ‖xn‖ → +∞. Then, from
the coercivity of F on X1(δ1), we have

lim
n→+∞

〈F(xn), x0 − xn〉
‖xn‖ = −∞.

Furthermore, it is obvious that
{ 〈F(x ′

0),x ′
0−xn〉

‖xn‖
}

is bounded. Dividing (31) by ‖xn‖ and passing

to the limit, a contradiction arises. Hence, {xn} is bounded. Thus, we can find a subsequence
{xn j } and x̄ ∈ X1(δ1) such that xn j → x̄ . Taking the limit in (28) (with xn replaced by xn j ),
we have x̄ ∈ X0. Taking the limit in (27) (with xn replaced by xn j ), we obtain

〈F(x̄), x − x̄〉 ≥ 0,∀x ∈ X0.

That is, x̄ ∈ X̄ . The proof is complete. ��
Similarly, we can prove the next result.

Proposition 2.7 Let X be finite dimensional. Let F be continuous on X1 and the solution
set X̄ of (VIP) be nonempty. Suppose that there exists δ1 > 0 such that F is monotone and
coercive on X2(δ1) defined by (23). Further assume that the set Q defined by (26) (with
X1(δ1) replaced by (X2(δ1)) is nonempty. Then, (VIP) is generalized type I LP well-posed.

Remark 2.2 If intX0 
= ∅, then it is obvious that the set Q defined by (26) is nonempty.

Now we consider the case when Y is a normed space, K is a closed and convex cone with
nonempty interior intK and let e ∈ intK .

Let t ≥ 0 and denote

X4(t) = {x ∈ X1 : g(x) ∈ K − te}. (32)

Proposition 2.8 Let Y be a normed space, K be a closed and convex cone with nonempty
interior intK and e ∈ intK . Assume that there exists t1 > 0 such that

(i) for each x ′ ∈ X0, 〈F( · ), x ′ − ( · )〉 is u.s.c. on X4(t1);
(ii) the function f (x) defined by (10) is level-compact on X4(t1).

Further assume that the solution set X̄ of (VIP) is nonempty. Then, (VIP) is generalized
type I LP well-posed.
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Proof Let {xn} be a generalized type I LP approximating solution sequence. Then, there
exists {εn} ⊂ R1+ with εn → 0 such that

〈F(xn), x ′ − xn〉 ≥ −εn,∀x ′ ∈ X0, (33)

dK (g(xn)) ≤ εn . (34)

From (34), we deduce that there exists {kn} ⊂ K such that

‖g(xn) − kn‖ ≤ 2εn .

That is,

g(xn) − kn ∈ 2εn B, (35)

where B is the closed unit ball of Y . We assert that there exists M0 > 0 such that

B ⊂ K − M0e. (36)

Otherwise, there exist bn ∈ B and 0 < Mn → +∞ such that

bn + Mne /∈ K , ∀n.

Thus,

bn + Mne /∈ intK , ∀n,

implying

bn/Mn + e /∈ intK , ∀n. (37)

Taking the limit in (37), we get e /∈ intK , contradicting the assumption. It follows from (35)
and (36) that

g(xn) − kn ∈ K − 2M0εne.

Thus,

g(xn) ∈ K − 2M0εne.

Consequently, we can assume without loss of generality that

xn ∈ X4(t1) (38)

since 2M0εn → 0 as n → +∞. From (33), we have

f (xn) ≤ εn,∀n. (39)

From (38), (39) and the level-compactness of f on X4(t1), we see that there exist a sub-
sequence {xn j } and x̄ ∈ X4(t1) such that xn j → x̄ . Taking the limit in (34) (with n
replaced by n j ), we get x̄ ∈ X0. Taking the upper limit in (33) (with n replaced by n j ),
we obtain

〈F(x̄), x − x̄〉 ≥ 0, ∀x ∈ X0.

Thus, x̄ ∈ X̄ . The proof is complete. ��
Definition 2.3 X1 ⊂ X is said to have property (P1) if for any x1, x2 ∈ X1, there exists
t0 ∈ (0, 1) such that x1 + t (x2 − x1) ∈ X1,∀t ∈ (0, t0).
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Proposition 2.9 Let X be finite dimensional. Let Y be a normed space, K be a closed and
convex cone with nonempty interior intK and e ∈ intK . Let F be continuous on X1. Suppose
that there exists t1 > 0 such that F is monotone and coercive on X4(t1) given by (32).
Further assume that X1 has property (P1), there exists x ′

0 ∈ X1 such that g(x ′
0) ∈ intK and

the solution set X̄ of (VIP) is nonempty. Then, (VIP) is generalized type I LP well-posed.

Proof Let {xn} be a generalized type I LP approximating solution sequence. Then, there
exists {εn} ⊂ R1+ with εn → 0 such that

〈F(xn), x ′ − xn〉 ≥ −εn, ∀x ′ ∈ X0,

dK (g(xn)) ≤ εn . (40)

Arguing as in the proof of Proposition 2.8, we can deduce from (40) that xn ∈ X4(t1) when
n is sufficiently large. As g(x ′

0) ∈ intK , g is continuous on X1 and X1 has property (P1), we
can easily see that the set Q defined by (26) (with X1(δ1) replaced by X4(t1)) is nonempty.
In fact, x ′

0 ∈ Q. The rest of the proof is the same as that of Proposition 2.6 (with X1(δ1)

replaced by X4(t1)). ��
Now we consider the case when X is a finite dimensional normed space, and X0 and

X1 ⊂ X are convex. Let

h(x) = sup
x ′∈X0

〈F(x ′), x − x ′〉, ∀x ∈ X1.

Clearly, h(x) is a convex function on X1. Moreover, if F is pseudomonotone on X0, i.e.,

〈F(x ′), x − x ′〉 ≥ 0 ⇒ 〈F(x), x − x ′〉 ≥ 0, ∀x, x ′ ∈ X0,

then h(x) is nonnegative on X0 and vanishes at any solution of (VIP). On the other hand,
any minimizer x̄ of h over X0 with h(x̄) = 0 is a solution of (VIP) if F is continuous on X0.
This implies that (VIP) is equivalent to minimizing h(x) over X0 ([25], Proposition 2.1) if F
is pseudomonotone and continuous on X0 and X̄ 
= ∅. That is, the optimal set of minimizing
h(x) over X0 is also X̄ .

It is obvious that the above conclusion also holds if F is monotone and continuous on X0

and X̄ 
= ∅.
We make the following assumption.

Assumption 2.1 X is a finite dimensional normed space, Y is a normed space, X1 ⊂ X is a
nonempty, closed and convex set. K ⊂ Y is a closed and convex cone with nonempty interior
int K , F is continuous and monotone on X1, g is concave on X1 (i.e., for any x1, x2 ∈ X1

and any θ ∈ (0, 1), there holds that g(θx1 + (1 − θ)x2) − θg(x1) − (1 − θ)g(x2) ∈ K ). The
solution set of (VIP) is nonempty.

It is obvious that under Assumption 2.1, the optimization problem (P) (with f replaced
by h) is a convex program.

We need the following lemma, whose proof is elementary and thus omitted.

Lemma 2.3 Let F be monotone on X1 and X̄ 
= ∅. Then, if {xn} is a (generalized) type I
LP approximating solution sequence of (VIP), then it is a (generalized) type I LP minimizing
sequence of (P) (with f replaced by h).

We state Theorem 2.4 of [15] as the following lemma.
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Lemma 2.4 Let Assumption 2.1 hold. Then, (P) (with f replaced by h) is generalized type
I LP well-posed if and only if the optimal set X̄ is nonempty and compact.

Similar to the proof of ([15], Theorem 2.4), we can prove the following lemma.

Lemma 2.5 Let Assumption 2.1 hold. Then, (P) (with f replaced by h) is type I LP well-posed
if and only if the optimal set of (P) is nonempty and compact.

The following theorem is a direct consequence of Lemmas 2.3–2.5 and (i) and (ii) of
Remark 1.1.

Theorem 2.4 Let Assumption 2.1 hold. Then, any type of (generalized) LP well-posedness
of (VIP) is equivalent to the fact that the solution set X̄ of (VIP) is nonempty and compact.

3 Relations among Various (Generalized) LP Well-Posednesses

Simple relationships among the (generalized) LP well-posednesses were mentioned in
Remark 1.1. Under Assumption 2.1, the equivalence of all types of (generalized) LP well-
posednesses was established in Theorem 2.4. In this section, we investigate further relation-
ships among them. First, we state ([15], Theorem 3.1) as the following lemma.

Lemma 3.1 Consider the optimization problem (P). Suppose that there exist δ > 0, α > 0
and c > 0 such that

dX0(x) ≤ cdα
K (g(x)), ∀x ∈ X2(δ), (41)

where

X2(δ) = {x ∈ X1 : dK (g(x)) ≤ δ}. (42)

If (P) is type I (type II) LP well-posed, then (P) is type I (type II) LP well-posed in the
generalized sense.

The following result follows immediately from Proposition 1.1 and Lemma 3.1.

Theorem 3.1 If there exist δ > 0, α > 0 and c > 0 such that (41) holds, then the type I
(type II) LP well-posedness of (VIP) implies its generalized type I (generalized type II) LP
well-posedness.

Definition 3.1 [5] Let W be a topological space and F : W → 2X be a set-valued map.
F is said to be upper Hausdorff semicontinuous (u.H.c. in short) at w ∈ W if, for any ε > 0,
there exists a neighbourhood U of w such that F(U ) ⊂ B(F(w), ε), where, for Z ⊂ X and
r > 0,

B(Z , r) = {x ∈ X : dZ (x) ≤ r}.
Clearly, X2(δ) given by (42) can be seen as a set-valued map from R1+ to X .
The next lemma is just Theorem 3.2 of [15].

Lemma 3.2 Assume that the set-valued map X2(δ) defined by (42) is u.H.c. at 0 ∈ R1+. If (P)
is type I (type II) LP well-posed, then (P) is type I (type II) LP well-posed in the generalized
sense.

The following theorem is a direct consequence of Proposition 1.1 and Lemma 3.2.
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Theorem 3.2 Suppose that the set-valued map X2(δ) defined by (42) is u.H.c. at 0 ∈ R1+.
If (VIP) is type I (type II) LP well-posed, then (VIP) is type I (type II) LP well-posed in the
generalized sense.

Now we consider the case when Y is a normed space.

Lemma 3.3 Let Y be a normed space and {xn} ⊂ X1. Then, dK (g(xn)) → 0 if and only if
there exists {yn} ⊂ Z with yn → 0 such that g(xn) ∈ K + yn,∀n.

Proof Necessity. From dK (g(xn)) → 0, we deduce that there exists {un} ⊂ K such that

‖g(xn) − un‖ → 0.

Let yn = g(xn) − un . Then, yn → 0 and g(xn) ∈ K + yn .
Sufficiency. Since g(xn) − yn ∈ K ,

dK (g(xn)) ≤ ‖g(xn) − (g(xn) − yn)‖ = ‖yn‖ → 0.

��
Let

X5(y) = {x ∈ X1 : g(x) ∈ K + y},∀y ∈ Y. (43)

Clearly, X5(y) can be seen as a set-valued map from Y to X .
We state ([15], Theorem 3.5) as the next lemma.

Lemma 3.4 Assume that the set-valued map X5(y) defined by (43) is u.H.c. at 0 ∈ Y . If (P)
is type I (type II) LP well-posed, then (P) is type I (type II) LP well-posed in the generalized
sense.

The next theorem follows immediately from Proposition 1.1, Lemmas 3.3 and 3.4.

Theorem 3.3 Assume that the set-valued map X5(y) defined by (43) is u.H.c. at 0 ∈ Y . If
(VIP) is type I (type II) LP well-posed, then (VIP) is type I (type II) LP well-posed in the
generalized sense.

In the special case when K is a closed and convex cone with nonempty interior int K and
e ∈ int K . We consider X4(t) defined by (32) as a set-valued map from R1+ to X . We have
the next lemma, which is just Theorem 3.8 of [15].

Lemma 3.5 Assume that the set-valued map X4(t) defined by (32) is u.H.c. at 0 ∈ R1+. If (P)
is type I (type II) LP well-posed, then (P) is type I (type II) LP well-posed in the generalized
sense.

The following theorem follows directly from Proposition 1.1 and Lemma 3.5.

Theorem 3.4 Assume that the set-valued map X4(t) defined by (32) is u.H.c. at 0 ∈ R1+.
If (VIP) is type I (type II) LP well-posed, then (VIP) is type I (type II) LP well-posed in the
generalized sense.
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